

Smarter Testing: Addressing the Materials Challenges of Hydrogen Infrastructures Dr Mark Eldridge – HIL Conference22nd November 2022, Glasgow

Smarter Testing

To Test:

'a procedure/measures intended to establish the quality, performance, or reliability of something, especially before it is taken into widespread use'.

element

Context and Perspectives

V Model Development for Hydrogen

Physical Challenges and Services in Hydrogen

Digital Opportunities and Services with Hydrogen

Concluding Remarks

H2 is an elegant Energy Vector

Perspectives are Key

H2 We need to look at the whole system

System, Product Scalability, Time and Cost

- Global H2 ~ 75 million tonnes per year demand > projected to 621 million tonnes 2050.
- 75 Million Tonnes is Grey without little or no CCUS infrastructure.
- e.g.Paris Orly Airport filling up 30 percent of flights H2 270 tons of 'liquid' hydrogen per
- Largest single liquefier 32 tonnes per day (TPD), global capacity is 350 tonnes per day.
- Liquifaction energy losses (~40%), Safety, Scale....
- Hydrogen from Electrolysis 18 gigawatt-hours every day one typical nuclear plant 900
- If the electricity is produced through solar power, 44 square kilometers of solar panels would be needed—a footprint representing three times the entire surface area of the airport.
- Largest hydrogen-electrolysis plants today ~20 megawatts of capacity maximum production of just 0.5 gigawatthours a day—A growth factor of 50x.

Hydrogen Liquifaction (Review Article) *Energy Environ. Sci.*, 2022, **15**, 2690-2731

International Energy Agency (IEA), Energy Technology Perspectives 2020, Paris, France, 2020.

Smarter Testing: Combination Physical Testing and Digital Engineering

Across Full Product, (and System) Development Life Cycle

H2 Piping – Evolving Infrastructures

Physical Experience

Pipeline installation & operation, input data, ECA analysis, In-situ fracture testing, Riser fatigue testing, Reeling, AUT validation

Weld & material integrity HPHT, Sweet & Sour operations, Full Ring Testing, Inhibitor Testing, Failure Analysis

FJC, Chemical resistance, CD testing, Subsea insulation, HPHT testing, CUI, Electrochemical, Inspections, Failure Analysis

Flexible pipes, Umbilicals,

Elastomer seal testing,

Composite ageing, HPHT: H₂S,

Examples for Metallics

MECHANICAL PROPERTIES - HYDROGEN EFFECT

	Contract of the local division of the local
Source	- UK HSE

Limited or	no effect	Some effect	Significant effect	Unknown/ High strain rate	
Generic property	Pipeline Steel Parameters			Effect of Hydrogen	
Strength	Yield (0.2% or 0.5% proof stress)		Limited effect		
	Ultimate tensile strength (UTS)		Limited effect		
	YS/UTS ratio (Y/T)		Limited effect		
	Young's Modulus (E)		No effect		
	Poisson's ratio (v)		No effect		
Ductility Elongation (Total)		Significant reduction			
	Elongation (Uniform)		Limited effect		
Charpy impact	Charpy impact energy		Limited data fou	Limited data found, High strain rate	
Crack propagation resistance	Drop weight	tear test (DWTT)	No data found on DWTT, but possibly limited effect due to high strain rate		
Fracture toughness	K/J/CTOD initiation fracture toughness		Some reduction		
	J/CTOD ductile tearing resistance		Significant reduction		
Fatigue	Fatigue threshold stress intensity factor range (△Kth)		slight reduction in some cases		
	Fatigue Crack growth rate		Significant Increase, many variables		
	S-N fatigue line		Effect observed more strongly in high stress LCF region		

Fatigue Endurance - in-situ

ASME B31.12 Standard on Hydrogen Piping and Pipelines contains requirements for piping in gaseous and liquid hydrogen service and pipelines in gaseous hydrogen service.

Non-Metallic Effects of H2

Permeation

Thermoplastic hydrogen 40 bar 40 °C:

Rapid Gas Decompression with H2

□ Carbon dioxide has for years caused RGD damage:

THERMAL SHOCK

- High temperature soak followed by high flow low temperature fluid
 - 700 gpm liquid hydrogen
 - 500 gpm liquid nitrogen
- Low temperature soak followed by high flow high temperature fluid
 - Oxygen at 4,500 psi and 700 deg. F
 - Nitrogen at 4,500 psi and 550 deg. F
 - Nitrogen at 2,500 psi and 1,500 deg. F
 - Nitrogen at 1500 psi and 1,100 deg. F

PROPULSION DEVELOPMENT TESTING

(NTS/Element)

Digital Experience

PRODUCTION

TRANSPORT AND STORAGE

UTILISATION

- EXPLOSION RISK AND CONSEQUENCE MODELLING OF ELECTROLYSERS
- ELECTROCHEMICAL MODELLING OF
 ELECTROLISER STACKS
- PLUME DISPERSION AND IGNITION RISK
 MODELLING
- SYSTEM-LEVEL MODELLING OF STORAGE CONTAINER RE-FUELLING OR DISCHARGE OPERATIONS
- THERMO- AND FLUID DYNAMICS OF CRYOGENIC HYDROGEN STORAGE
 AND TRANSPORT
 - LEAKS AND EXPLOSION MODELLING OF TRANSPORT INFRASTRUCTURE
 - PLUME DISPERSION AND IGNITION RISK MODELLING

- FUEL CELL THERMAL AND FLUID DYNAMIC MODELLING AND OPTIMISATION
- FUEL CELL EXPLOSION AND CONSEQUENCE
 ANALYSIS

Digital Asset Management

- Digital twin technology for real time condition assessment
- Life extension / extended time between overhaul
- Maintenance based on actual use not conservative design assessment

Hydrogen fuel cell performance optimisation

The client received a solution which helped reduce wear of fuel cell whilst in operation saving costs of maintenance over time.

Our work

- Computational Fluid Dynamics models were built and used to predict flow distribution and characterize non-uniformity in the catalyst and the cell itself.
- The team proposed a design modification consisting of porous strips used to improve flow uniformity within the fuel cell.

Challenge

Norton Straw were approached by a fuel cell manufacturer to support the troubleshooting of in-service operation of their fuel cell.

Hydrogen Bus Fuel Tank Integrity

Challenge

Our customer designs fuel storage systems for hydrogen vehicles, which must reach a very high standard of integrity. They asked for our support in using analysis to demonstrate the strength of their design.

Our work

We used advanced Finite Element Analysis (FEA) modelling to determine the range of stresses in the system from static and dynamic loads. We then used our expertise in integrity assessment to assess the strength and life of the fuel storage system.

Outcome

We provided our client with a responsive analysis service that quickly identified areas where the design could be improved and suggested modifications. This has led to an ongoing support arrangement.

CFD - Sloshing of cryogenic hydrogen tanks

The Challenge

Cryogenic, liquid hydrogen storage in aerospace applications carries the risk over-pressurization due to sloshing-induced hydrogen boil-off.

Our Approach

We implemented a calibrated boiling model in the commercial CFD tool StarCCM+. This model was validated against experimental data and used to produce insights regarding sloshing-induced hydrogen boil-off.

The Outcome

We delivered significant, new insights into the behaviour of liquid hydrogen sloshing to a UK government-funded Aerospace program.

element

Safety: Explosion modelling and structural response

Outcome

Explosion risk assessment generated, submitted and accepted by the safety authorities. The vessel is now in service.

Challenge

- Safety studies for FPSO
- Dispersion, helideck safety & blast response
- Simulation used to support FPSO design

Our work

 Simulation used to assess consequences of accidental gas releases and quantify blast over-pressures along with assessment of helideck safety and structural response

Turbine Component Lifing

Our Experience

- Development of novel materials test programs to support
 - Constitutive model development
 - Creep-fatigue lifing models
 - Corrosion / coating models
- Lifing model development
 - Classical N/Nf and t/tr approaches
 - Development of ductility exhaustion methods, e/ef
 - Combined Creep-Fatigue
- Implementation to Finite Element Analysis
 - Development of User Elements / UMATs for industry standard solvers
 - Development of bespoke FEA solutions
- Methods development to support life extension of UK Nuclear AGRs

Through benchmarking against results from Internal 1D Modelling tools, Element Digital Engineering are evaluating two software platforms, to model flow rates, pressures and temperatures across the internal air, oil, and fuel systems.

Full results due mid=2023.

<u>1D MODEL</u> BENCHMARKING

Phase 1. Individual Components

- Compare the functionality of relevant components
- Create customised components by importing Client scripting

Phase 2. Sub-system Modelling

• Evaluate the performance of simplified sub-system models, e.g. the HP turbine blade feed system (right).

Phase 3. Full Engine Modelling

• Test full-scale engine models with interactions between sub-systems.

Element – Assuring Your Energy Transition

Smarter Testing: Systems and Component Level

Thank you for listening....

Dr Mark Eldridge Market Director, Renewables & Hydrogen 07827926757, mark.eldridge@element.com